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Large-scaled Dataset

• Data is growing at more than 20% per Year

• Larger datasets can offer increased performance at a cost of more 
human labor and training hours

• Privacy issues

• Large storage capacity required

Facebook's SAM: SA-1B Dataset

How can we do better?

Can we transfer the information 
from large datasets into smaller 
ones?
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• Coreset relies on a Heuristic estimate
• Often results in a sub optimal result compared to learned selection methods

Coreset Selection
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Coreset Selection performance on CIFAR10 with ResNet-18 
(Chengcheng Guo, Bo Zhao, and Yanbing Bai. 2022. DeepCore)



• DD synthesizes asmallyet informativedataset that approximates the largedataset!

Goal: A model trained on the synthetic dataset should have a similar generalization performance 
to that trained on the original one.

Dataset Distillation (DD)
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Dataset Condensation with Gradient Matching, ICLR, 2021 
(Zhao et al. )



Goal:To generatesynthetic dataset that approximate the original dataset

Howcanwesolve this?
(1)PerformanceMatching (3)Gradient Matching

Shortcomings:Heavycomputation !

(2)Label distillation

Previous Works
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Shortcomings:Heavycomputation
             Biased Samples



(4)Distribution Matching (DM)

• Avoid expensivecomputation stemming
frombi-level optimization

• Performance is lower than SOTA

(5)Matching Train Trajectory (MTT)

• Incurs expensivecomputation
stemming fromtraining multiple experts.

Previous Works (2)
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To summarize:

• Performance matching is short-sighted and is difficult to optimize.

• Gradient matching generates biased samples.

• While distribution matching alleviate this, its performance is lower.

• Trajectory matching takes a long time and is quite compute intensive.

Less Efficient ...

Previous Works (3)
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Idea: Use attention to extract and match meaningful information from the intermediate features

Methodology (DataDAM)
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(a) Illustration of DataDAM method. DataDAM includes a Spatial Attention Matching (SAM) module and a 
complementary MMD loss to capture the dataset’s distribution. (b) The internal architecture of the SAM module.



No Bi-level Optimization

Regularizing the
Attention Matching

Methodology (DataDAM)
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• Experimentswere conducted in

• CIFAR-10/100 (IPC10; Resolution 32x32)

• Tiny-ImageNet and ImageNet (IPC1; Resolution 64x64)

• ConvNet wasemployed,which consists of severalblocks,eachcontaining 3x3/
128kernels,ReLU,2x2AveragePooling.

Visual Results
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• Experimentswere conducted in

• ImageNet subsets (High Resolution 128x128)

• ImageNette (Left), ImageWoof (Center), ImageSquawk (Right) - IPC 10

Visual Results (2)

11



• Experimentswere conducted on CIFAR-10 (IPC50):

• TSNE visualization ofSynthetic Data distribution (stars) dispersed over the original 
dataset

Visual Results (3)
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Better coverage of class embeddings 
when using our Synthetic Dataset



Experimental Results 
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Low and Medium
Resolution Performance

High Resolution 
Performance

Performance on CIFAR-10
over varying IPC



• Experimentswere conducted on CIFAR-10 :

• Cross-Architecture generalizations

• Computational costs

Experimental Results (2)
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Applications 
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• Experimentswere conducted on CIFAR-10 (IPC50):

• Applications in Continual Learning: 5-step (Left) 10-step (Right)



Applications (2)
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• Experimentswere conducted on CIFAR-10 (IPC50):

• Applications in Neural Architecture Search

• (Left) CIFAR-10 using full search-space

• (Right) CIFAR1-10 using Top 20% of search space



Thank You for watching!
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