DataDAM: Efficient Dataset Distillation with Attention Matching

Lawryshyn

Large-scaled Dataset

• Data is growing at more than 20% per Year

Facebook's SAM: SA-1B Dataset

- Larger datasets can offer increased performance at a cost of more human labor and training hours
- Privacy issues
- Large storage capacity required

How can we do better?

Can we transfer the information from large datasets into smaller ones?

Coreset Selection

Coreset Selection performance on CIFAR10 with ResNet-18 (Chengcheng Guo, Bo Zhao, and Yanbing Bai. 2022. DeepCore)

- Coreset relies on a Heuristic estimate
- Often results in a sub optimal result compared to learned selection methods

Dataset Distillation (DD)

• DD synthesizes a **small yet informative** dataset that approximates the large dataset!

$$egin{aligned} \mathcal{T} &= \{(oldsymbol{x}_i, y_i)\}_{i=1}^{|\mathcal{T}|} \ oldsymbol{arphi} & |\mathcal{T}| >> |\mathcal{S}| \ \mathcal{S} &= \{(oldsymbol{s}_j, y_j)\}_{j=1}^{|\mathcal{S}|} \end{aligned}$$

Dataset Condensation with Gradient Matching, ICLR, 2021 (Zhao et al.)

Goal: A model trained on the synthetic dataset should have a similar generalization performance to that trained on the original one.

Previous Works

Goal: To generate **synthetic dataset** that **approximate** the original dataset

How can we solve this?

(1) Performance Matching

$$\mathcal{L}(\mathcal{S}, \mathcal{T}) = \mathbb{E}_{\theta^{(0)} \sim \Theta}[l(\mathcal{T}; \theta^{(T)})],$$

$$\theta^{(t)} = \theta^{(t-1)} - \eta \nabla l(\mathcal{S}; \theta^{(t-1)}),$$

(2) Label distillation

$$\tilde{\boldsymbol{Y}}_{\mathcal{S}}^{*} = \operatorname*{arg\,min}_{\tilde{\boldsymbol{Y}}_{\mathcal{S}}} \sum_{\boldsymbol{x}, \boldsymbol{y} \sim \mathcal{T}} L\left(f_{\boldsymbol{\Theta}'}\left(\boldsymbol{x}\right), \boldsymbol{y}\right)$$

Shortcomings: Heavy computation !

(3) Gradient Matching

$$\mathcal{L}(S, \mathcal{T}) = \mathbb{E}_{\theta^{(0)} \sim \Theta} [\sum_{t=0}^{T} \mathcal{D}(S, \mathcal{T}; \theta^{(t)})],$$

$$\theta^{(t)} = \theta^{(t-1)} - \eta \nabla l(S; \theta^{(t-1)}),$$

$$\mathcal{D}(S, \mathcal{T}; \theta) = \sum_{c=0}^{C-1} d(\nabla l(S_c; \theta), \nabla l(\mathcal{T}_c; \theta)),$$

$$d(\mathbf{A}, \mathbf{B}) = \sum_{i=1}^{L} \sum_{j=1}^{J_i} (1 - \frac{\mathbf{A}_j^{(i)} \cdot \mathbf{B}_j^{(i)}}{\|\mathbf{A}_j^{(i)}\| \|\mathbf{B}_j^{(i)}\|}),$$
Shortcomings: Heavy computation

Biased Samples

Previous Works (2)

(4) Distribution Matching (DM)

$$\mathcal{L}(\mathcal{S}, \mathcal{T}) = \mathbb{E}_{\theta \in \Theta}[\mathcal{D}(\mathcal{S}, \mathcal{T}; \theta)]$$
$$\mathcal{D}(\mathcal{S}, \mathcal{T}; \theta) = \sum_{c=0}^{C-1} \|\mu_{\theta, s, c} - \mu_{\theta, t, c}\|^2,$$
$$\mu_{\theta, s, c} = \frac{1}{M_c} \sum_{j=1}^{M_c} f_{\theta}^{(i)}(X_{s, c}^{(j)}), \quad \mu_{\theta, t, c} = \frac{1}{N_c} \sum_{j=1}^{N_c} f_{\theta}^{(i)}(X_{t, c}^{(j)}),$$

- **Avoid** expensive computation stemming from bi-level optimization
- Performance is **lower** than SOTA

(5) Matching Train Trajectory (MTT)

$$\mathcal{L} = \frac{\|\hat{\theta}_{t+N} - \theta^*_{t+M}\|_2^2}{\|\theta^*_t - \theta^*_{t+M}\|_2^2},$$

• **Incurs** expensive computation stemming from training multiple experts.

Previous Works (3)

To summarize:

- Performance matching is **short-sighted** and is **difficult** to optimize.
- Gradient matching generates **biased** samples.
- While distribution matching alleviate this, its performance is **lower.**
- Trajectory matching takes a **long** time and is quite **compute intensive.**

Less Efficient ...

Methodology (DataDAM)

(a) Illustration of DataDAM method. DataDAM includes a Spatial Attention Matching (SAM) module and a complementary MMD loss to capture the dataset's distribution. (b) The internal architecture of the SAM module.

Idea: Use attention to extract and match meaningful information from the intermediate features

Methodology (DataDAM)

Visual Results

- Experiments were conducted in
 - CIFAR-10/100 (IPC10; Resolution 32x32)
 - Tiny-ImageNet and ImageNet (IPC1; Resolution 64x64)
- ConvNet was employed, which consists of several blocks, each containing 3 x 3 / 128 kernels, ReLU, 2 x 2 Average Pooling.

Visual Results (2)

- Experiments were conducted in
 - ImageNet subsets (High Resolution 128x128)
- ImageNette (Left), ImageWoof (Center), ImageSquawk (Right) IPC 10

Visual Results (3)

- Experiments were conducted on CIFAR-10 (IPC50):
 - TSNE visualization of Synthetic Data distribution (stars) dispersed over the original dataset

Experimental Results

-			IPC	Coreset Random	Selection K-Center	DD	DC	DSA	Training DM	g Set CA	Synth AFE	esis KIP	MTT	DataDAM	Whole Data	set
_	CIF,	AR-10	1 10 50	$\begin{array}{c} 14.4_{\pm 2.0} \\ 26.0_{\pm 1.2} \\ 43.4_{\pm 1.0} \end{array}$	$\begin{array}{c} 21.5_{\pm 1.3} \\ 14.7_{\pm 0.9} \\ 27.0_{\pm 1.4} \end{array}$	$36.8_{\pm 1.}$	$\begin{array}{c} 28.3_{\pm 0.} \\ _2 44.9_{\pm 0.} \\ 53.9_{\pm 0.} \end{array}$	$_{5}^{5}28.8_{\pm 0.7}^{2}$ $_{5}^{5}52.1_{\pm 0.8}^{2}$ $_{5}^{5}60.6_{\pm 0.8}^{2}$	$_{7}^{}26.0_{\pm 0}^{}_{5}48.9_{\pm 0}^{}_{5}63.0_{\pm 0}^{}$	$_{0.8} 31.0$ $_{0.6} 50.9$ $_{0.4} 62.3$	$6_{\pm 0.8}$ 2 $9_{\pm 0.5}$ 4 $3_{\pm 0.4}$ 5	$29.8_{\pm 1.0}$ $46.1_{\pm 0.7}$ $53.2_{\pm 0.7}$	$\begin{array}{c} 31.9_{\pm 1.2} \\ \textbf{56.4}_{\pm \textbf{0.7}} \\ 65.9_{\pm 0.6} \end{array}$	$\begin{array}{c} {\bf 32.0}_{\pm 1.2} \\ 54.2_{\pm 0.8} \\ {\bf 67.0}_{\pm 0.4} \end{array}$	84.8 _{±0.1}	Low and Medium
	CIFAR-100		1 10 50	$\begin{array}{c} 4.2_{\pm 0.3} \\ 14.6_{\pm 0.5} \\ 30.0_{\pm 0.4} \end{array}$	$\begin{array}{c} 8.4_{\pm 0.3} \\ 17.3_{\pm 0.3} \\ 30.5_{\pm 0.3} \end{array}$	-	$12.8_{\pm 0.2}$ $25.2_{\pm 0.2}$ $30.6_{\pm 0.2}$	${}^3_{3}13.9_{\pm 0.3}$ ${}^3_{3}32.3_{\pm 0.3}$ ${}_642.8_{\pm 0.4}$	$_3 {11.4_{\pm 0}} \\ _3 {29.7_{\pm 0}} \\ _4 {43.6_{\pm 0}} $	$_{0.3}14.0$ $_{0.3}31.0$ $_{0.4}42.9$	$0_{\pm 0.3}$ 1 $5_{\pm 0.2}$ 2 $9_{\pm 0.2}$	$12.0_{\pm 0.2}$ $29.0_{\pm 0.3}$	$\begin{array}{c} 13.8_{\pm 0.6} \\ 33.1_{\pm 0.4} \\ 42.9_{\pm 0.3} \end{array}$	$\begin{array}{c} 14.5_{\pm 0.5}\\ 34.8_{\pm 0.5}\\ 49.4_{\pm 0.3}\end{array}$	56.2 ± 0.3	Resolution Performance
	Tiny lı	mageNet	1 10 50	$\begin{array}{c} 1.4_{\pm 0.1} \\ 5.0_{\pm 0.2} \\ 15.0_{\pm 0.4} \end{array}$	$\begin{array}{c} 1.6_{\pm 0.1} \\ 5.1_{\pm 0.2} \\ 15.0_{\pm 0.3} \end{array}$		$5.3_{\pm 0.1}$ $12.9_{\pm 0.1}$ $12.7_{\pm 0.1}$	$\begin{array}{c} 5.7_{\pm 0.1} \\ 1.16.3_{\pm 0.2} \\ 4.5.1_{\pm 0.2} \end{array}$	$\begin{array}{c} 3.9_{\pm 0.} \\ {}_2 12.9_{\pm 0} \\ 25.3_{\pm 0} \end{array}$.2).4).2	-	-	$\begin{array}{c} 6.2_{\pm 0.4} \\ 17.3_{\pm 0.2} \\ 26.5_{\pm 0.3} \end{array}$	$\begin{array}{c} 8.3_{\pm 0.4} \\ 18.7_{\pm 0.3} \\ 28.7_{\pm 0.3} \end{array}$	$37.6_{\pm 0.4}$	
				IPC Ran	dom DN	1 Data	aDAM W	/hole Dat	aset	90						
High Resoluti Performance	on	ImageNe	t-1K	$\begin{array}{c c c} 1 & 0.5 \\ 2 & 0.9 \\ 10 & 3.1 \\ 50 & 7.6 \end{array}$	$\begin{array}{cccc} \pm 0.1 & 1.3 \pm \\ \pm 0.1 & 1.6 \pm \\ \pm 0.2 & 5.7 \pm \\ \pm 1.2 & 11.4 \pm \end{array}$	$\begin{array}{cccc} 0.1 & 2.0 \\ 0.1 & 2.2 \\ 0.1 & 6.3 \\ 0.1 & 6.3 \\ 0.9 & 15. \end{array}$	$egin{array}{c c} \pm 0.1 \\ \pm 0.1 \\ \pm 0.0 \\ 5 \pm 0.2 \end{array}$	$33.8_{\pm 0.3}$	3 (%) curacy (%)	70 -	T					Performance on CIFAR-10
	••••	ImageN	ette	$\begin{array}{c c}1 & 23.5 \\10 & 47.7\end{array}$	$5_{\pm 4.8} 32.8_{\pm 7}$ $7_{\pm 2.4} 58.1_{\pm 7}$	=0.5 34 . =0.3 59 .	$\left. egin{array}{c c} 7_{\pm 0.9} \\ 4_{\pm 0.4} \end{array} ight $	$87.4_{\pm 1.0}$	0 Testing Ac	40 -					- Random	over varying IPC
		ImageWo		$\begin{array}{c c c}1 & 14.2 \\ 10 & 27.0 \end{array}$	$2_{\pm 0.9} 21.1_{\pm 0.9} 31.4_{\pm 0.9} 31.4_{\pm 0.9}$	=1.2 24 . =0.5 34 .	$egin{array}{c c} 2_{\pm 0.5} \ 4_{\pm 0.4} \end{array}$	$67.0_{\pm 1.3}$	3	30 -				DC DSA DM DataDAM		
			ImageSqu	ıawl	$\left \begin{array}{c c} 1 & 21.8 \\ \hline 10 & 40.2 \end{array} \right $	$B_{\pm 0.5} \ 31.2_{\pm 0.4} \ 50.4_{\pm 0.4}$	$_{=0.7}$ 36 . $_{=1.2}$ 55 .	$\begin{array}{c c} \mathbf{4_{\pm 0.8}} \\ \mathbf{4_{\pm 0.9}} \end{array}$	$87.5_{\pm 0.3}$	3	10 0		200	400 Images pe	600 stricters	Whole Dataset

Experimental Results (2)

- Experiments were conducted on CIFAR-10 :
 - Cross-Architecture generalizations
 - Computational costs

0	T E	AlexNet	VGG-11	ResNet-18	-	Mathod	rı	ın time(se	ec)	GPU	memor	ry(MB)
DC	ConvNet	$28.8_{\pm 0.7}$	$38.8_{\pm 1.1}$	$20.9_{\pm 1.0}$	-	MELHOU	IPC1	IPC10	IPC50	IPC1	IPC10	IPC50
CAFE	ConvNet	$43.2_{\pm 0.4}$	$48.8_{\pm 0.5}$	$43.3_{\pm 0.7}$		DC	$0.16_{\pm 0.0}$	$3.31_{\pm 0.0}$	$15.74_{\pm 0.1}$	3515	3621	4527
DSA	ConvNet	$53.7_{\pm 0.6}$	$51.4_{\pm 1.0}$	$47.8_{\pm 0.9}$		DSA	$0.22_{\pm 0.0}$	$4.47_{\pm 0.1}$	$20.13_{\pm 0.6}$	3513	3639	4539
DM	ConvNet	$60.1_{\pm 0.5}$	$57.4_{\pm 0.8}$	$52.9_{\pm 0.4}$		DM	$0.08_{\pm 0.0}$	$0.08_{\pm 0.0}$	$0.08_{\pm 0.0}$	3323	3455	3605
MTT	ConvNet	$43.9_{\pm 0.9}$	$48.7_{\pm 1.3}$	$60.0_{\pm 0.7}$	_	MTT	$0.36_{\pm 0.2}$	$0.40_{\pm 0.2}$	OOM	2711	8049	OOM
DataDAM	1 ConvNet	$63.9_{\pm 0.9}$	$64.8_{\pm 0.5}$	$60.2_{\pm 0.7}$		DataDAM	$0.09_{\pm 0.0}$	$0.08_{\pm 0.0}$	$0.16_{\pm 0.0}$	3452	3561	3724

Applications

- Experiments were conducted on CIFAR-10 (IPC50):
 - Applications in **Continual Learning**: 5-step (Left) 10-step (Right)

Applications (2)

- Experiments were conducted on CIFAR-10 (IPC50):
 - Applications in Neural Architecture Search
 - (Left) CIFAR-10 using full search-space
 - (Right) CIFAR1-10 using Top 20% of search space

	Randon	DM CAFE Ours E	arly-stopping	Whole Dataset	Random DM CAFE Ours Early-stopping Whole Dataset							
Performance	88.9	87.2 83.6 89.0	88.9	89.2	Performance	88.9	87.2 83.6 89.0	88.9	89.2			
Correlation	0.70	0.71 0.59 0.72	0.69	1.00	Correlation	0.44	0.51 0.36 0.69	0.64	1.00			
Time cost (min)	206.4	206.6 206.4 206.4	206.2	5168.9	Time cost (min)	33.0	32.2 30.7 34.8	37.1	5168.9			
Storage (imgs)	500	$500 \ 500 \ 500$	5×10^4	5×10^{4}	Storage (imgs)	500	$500 \ 500 \ 500$	5×10^4	5×10^{4}			

Thank You for watching!

