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Introduction and Motivation

Dataset Distillation

Synthesizing a small but informative dataset S that has competitive performance to the original large

training dataset T .

Figure 1. Figure by Zhao et al., Dataset Condensation

with Gradient Matching, ICLR, 2021.

Applications

v Replay exemplars in continual learning (CL)

v Accelerating neural architecture search (NAS)

v Privacy protection in federated learning

v Membership inference defense

Motivation

v Dataset distillation algorithms typically suffer from expensive computational costs.

v Large time consumption hinders scalability to high-quality and large-scale datasets.

v Overfitting to biased samples during dataset distillation procedures (biased data distribution).

v There still exists a substantial performance gap between models trained on condensed synthetic

sets and those trained on the whole dataset.

Figure 2. Data distributions of the synthetic images learned by prior methods on the CIFAR10 dataset with IPC 50. The

stars represent the synthetic data dispersed amongst the original dataset.

Research Question

This study aims to answer the following research question: Can we develop a simple yet effective data

distillation algorithm capable of learning unbiased samples for any training datasets, regardless of their

resolution and scale?

Contributions

Keeping the research question in mind, we introduce a novel dataset distillation framework designed

to overcome existing limitations, facilitating fast and data-efficient learning for visual classification

tasks. Our contributions can be summarized as follows:

v We propose a simple method, dataset distillationwith attentionmatching (DataDAM) to effectively

approximate the distribution of the real dataset. This is achieved by matching the spatial attention

maps of real and synthetic data generated by different layers within a family of randomly initialized

neural networks.

v We evaluate DataDAM on computer vision datasets with low, medium, and high resolutions,

where it achieves state-of-the-art results across multiple benchmark settings. Our approach also

enables cross-architecture generalizations.

v We illustrate that DataDAM offers up to a 100x reduction in run time costs while maintaining the

lowest GPU memory consumption. Our approach also enables cross-architecture generalizations.

v We show that DataDAM can enhance downstream applications by improving memory efficiency

for continual learning and accelerating neural architecture search through a more representative

proxy dataset.

Dataset Distillation with Attention Matching (DataDAM)

Figure 3. (a) Illustration of the DataDAM method. DataDAM includes a Spatial Attention Matching (SAM) module and a

complementary MMD loss to capture the dataset’s distribution. (b) The internal architecture of the SAM module.

Overall Performances on Benchmark Datasets

IPC
Coreset Selection Training Set Synthesis

Whole Dataset
RandomK-Center DD DC DSA DM CAFE KIP MTT DataDAM

CIFAR-10

1 14.4±2.0 21.5±1.3 - 28.3±0.5 28.8±0.7 26.0±0.8 31.6±0.8 29.8±1.0 31.9±1.2 32.0±1.2
84.8±0.110 26.0±1.2 14.7±0.9 36.8±1.2 44.9±0.5 52.1±0.5 48.9±0.6 50.9±0.5 46.1±0.7 56.4±0.7 54.2±0.8

50 43.4±1.0 27.0±1.4 - 53.9±0.5 60.6±0.5 63.0±0.4 62.3±0.4 53.2±0.7 65.9±0.6 67.0±0.4

CIFAR-100

1 4.2±0.3 8.4±0.3 - 12.8±0.3 13.9±0.3 11.4±0.3 14.0±0.3 12.0±0.2 13.8±0.6 14.5±0.5
56.2±0.310 14.6±0.5 17.3±0.3 - 25.2±0.3 32.3±0.3 29.7±0.3 31.5±0.2 29.0±0.3 33.1±0.4 34.8±0.5

50 30.0±0.4 30.5±0.3 - 30.6±0.6 42.8±0.4 43.6±0.4 42.9±0.2 - 42.9±0.3 49.4±0.3

Tiny ImageNet

1 1.4±0.1 1.6±0.1 - 5.3±0.1 5.7±0.1 3.9±0.2 - - 6.2±0.4 8.3±0.4
37.6±0.410 5.0±0.2 5.1±0.2 - 12.9±0.1 16.3±0.2 12.9±0.4 - - 17.3±0.2 18.7±0.3

50 15.0±0.4 15.0±0.3 - 12.7±0.4 5.1±0.2 25.3±0.2 - - 26.5±0.3 28.7±0.3

Table 1. The testing accuracy % comparison to state-of-the-art methods for low- and medium-resolution datasets.

IPC Random DM DataDAMWhole Dataset

ImageNet-1K

1 0.5±0.1 1.3±0.1 2.0±0.1

33.8±0.3
2 0.9±0.1 1.6±0.1 2.2±0.1
10 3.1±0.2 5.7±0.1 6.3±0.0
50 7.6±1.2 11.4±0.9 15.5±0.2

ImageNette
1 23.5±4.8 32.8±0.5 34.7±0.9 87.4±1.010 47.7±2.4 58.1±0.3 59.4±0.4

ImageWoof
1 14.2±0.9 21.1±1.2 24.2±0.5 67.0±1.310 27.0±1.9 31.4±0.5 34.4±0.4

ImageSquawk
1 21.8±0.5 31.2±0.7 36.4±0.8 87.5±0.310 40.2±0.4 50.4±1.2 55.4±0.9

Table 2. The performance (testing accuracy %) comparison to

state-of-the-art methods for large-scale and high-resolution

computer vision datasets.

Figure 4. The testing accuracy % comparison with

state-of-the-art methods on the CIFAR10 dataset for

varying numbers of images per class (IPCs).

Cross-architecture Performances & Computational Cost

T\E AlexNet VGG-11 ResNet-18

DC ConvNet 28.8±0.7 38.8±1.1 20.9±1.0
CAFE ConvNet 43.2±0.4 48.8±0.5 43.3±0.7
DSA ConvNet 53.7±0.6 51.4±1.0 47.8±0.9
DM ConvNet 60.1±0.5 57.4±0.8 52.9±0.4
MTT ConvNet 43.9±0.9 48.7±1.3 60.0±0.7

DataDAM ConvNet 63.9±0.9 64.8±0.5 60.2±0.7
Table 3. Cross-architecture testing performance (%) on

CIFAR10 with 50 images per class.

Method
run time(sec) GPU memory(MB)

IPC1 IPC10 IPC50 IPC1 IPC10 IPC50

DC 0.16±0.0 3.31±0.0 15.74±0.1 3515 3621 4527
DSA 0.22±0.0 4.47±0.1 20.13±0.6 3513 3639 4539
DM 0.08±0.0 0.08±0.0 0.08±0.0 3323 3455 3605
MTT 0.36±0.2 0.40±0.2 OOM 2711 8049 OOM

DataDAM 0.09±0.0 0.08±0.0 0.16±0.0 3452 3561 3724
Table 4. Training time and GPU memory comparisons for

state-of-the-art synthesis methods. Run time is expressed

per step, averaged over 100 iterations.

Applications

DataDAM has the potential to significantly boost several downstream applications, such as enhancing

memory efficiency for continual learning and expediting neural architecture search by utilizing a more

representative proxy dataset.

v Continual Learning:

Figure 5. (Left): Showcases 5-step and (Right): Showcases 10-step continual learning with tolerance region.

v Neural Architecture Search:

Random DM CAFEOurs Early-stoppingWhole Dataset

Performance 88.9 87.2 83.6 89.0 88.9 89.2
Correlation 0.70 0.71 0.59 0.72 0.69 1.00

Time cost (min) 206.4 206.6 206.4 206.4 206.2 5168.9
Storage (imgs) 500 500 500 500 5 × 104 5 × 104

Table 5. Neural architecture search on CIFAR10 dataset

with a search space of the whole sample space.

RandomDMCAFEOursEarly-stoppingWhole Dataset

Performance 88.9 87.2 83.6 89.0 88.9 89.2
Correlation 0.44 0.51 0.36 0.69 0.64 1.00

Time cost (min) 33.0 32.2 30.7 34.8 37.1 5168.9
Storage (imgs) 500 500 500 500 5 × 104 5 × 104

Table 6. Neural architecture search on CIFAR10 with a

search space of the top 20% of the sample space.

Distilled Image Visulization

The distilled images generated by DataDAM look real and are well-suited to be used with a variety of

architectures that were not seen during training.

((a)) CIFAR10 ((b)) CIFAR100 ((c)) Tiny ImageNet ((d)) ImageNet-1K

Figure 6. Example distilled images from 32x32 CIFAR10/100 (IPC10), 64x64 Tiny ImageNet (IPC1), and 64x64

ImageNet-1K (IPC1) datasets.
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